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1. Introduction and Definition 

This report is a further development of previous reports (1–4) based on the concept of the 

operational equations of state. It is suggested that the   equation of state (EOS) depends on 

three functions of one variable each that can be presented in the following simple form: 

    
   

*

,

E

E

d
S V E V

V
  

 



 . (1) 

Thus, in accordance with the general paradigm of the operational EOS, the EOS is the 

integral operator transforming the functions  V ,  E , and  V into the third function of 

two variables, called entropy  ,S V E .  

In their own turn, the functions  V ,  E , and  V are also certain operators of 

experimental data. Eventually, the EOS can be treated as the operators transforming 

experimental measurements into EOS rather than algebraic functions.  

The postulated EOS equation 1 is fixed in terms of the functions  V ,  E , and  V . We 

call it the skeleton of the operational EOS. However, our goal is to present the operational EOS 

as an operator whose arguments are not abstract functions but experimentally measured data. 

Those ultimate operational EOS depend upon the measuring tools available. By using the same 

skeleton but different measuring tools and procedures the ultimate operational EOS will be 

different. In particular, the ultimate EOS depends on the specific types of the available 

measurements‒isochoric, adiabatic, isothermal, etc. The general intermediate structure 

equation 1 guarantees that with any options of the chosen experiments and measuring devices, 

the ultimate EOS will be complete and thermodynamically consistent.  

We remind the reader that completeness means that the EOS contains the full thermodynamic 

information about the substance and any required thermodynamic potential or function can be 

extracted by standard algebraic and calculus operations and without any additional physical 

measurements. Thermodynamic consistency means that theEOS is totally consistent with 

the first and second laws of thermodynamics. Remember that the most popular and widespread 

EOS in the high-pressure and shock-wave analysis community, the Mie-Gruneisen EOS, is 

neither complete nor necessarily thermodynamically consistent with other assumptions. 

Generally speaking, the EOS is incompatible with the Mie-Gruneizen EOS (1, 2). 



 2 

Roughly speaking, there are no constraints in the choice of the function  ,S S V E  from the 

standpoint of thermodynamic consistency. In other words, there are no modeling assumptions 

when working with the most general function  ,S S V E . At the same time, the skeleton 

equation 1 imposes certain constraints on the substances under consideration. The assumptions 

can be dictated by mathematical or computational conveniences or generalization of a simple 

classical model. The assumptions can also be triggered by theoretical or experimental physical 

analysis. In all these cases of modeling assumptions there is the risk of thermodynamic 

inconsistency, insufficiency, or redundancy of generated models. The risk is greater when 

dealing with the sophisticated mathematical forms like equation 1.  

The assumption equation 1 has a clear physical formulation as it implies that the specific heat 

capacity C  at constant volume V  is a function of the internal energy density E  only: 

 C C E . The opposite statement is also valid: assuming that the heat capacity is a function of 

the internal energy only, one can deduce that the specific entropy S  can be presented in the 

general form equation 1. From that standpoint, the EOS reminds the classical Boyle-

Mariotte-Gay-Lussac model (when the heat capacity must be function of the absolute 

temperature T only) and the Mie-Gruneisen EOS (when the heat capacity must be a function of 

the entropy S only). At the same time, the EOS obviously differs from both previously 

mentioned classical models with one important exception. This exception concerns the model 

with the constant heat capacity coined in (4) as the Dulong-Petit model. In this case, all four 

models are equivalent to each other. 

2. Thermodynamic Identities for the ΑΡΛ EOS 

By applying standard thermodynamic identities to the definition equation 1 of the EOS, 

we get the following formulas for the absolute temperature T , pressure P , and heat capacity VC : 

      ,T V E E V    . (2) 

          
   *

2

1
,

E

E

P V E E V V V d
V

 
 

          
     

 


 . (3) 

  
 

 
1

,V VC V E C E
E

 


 . (4) 

According to equation 2, the absolute temperature for the EOS appears to be the sum of 

the function  E  of the internal energy density E and of the function  V of the specific 

volume V . Equation 4 also states that the specific heat capacity function VC  appears to be the 

function of the specific internal energy E  only. 
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The Gruneisen function  ,V E  for the EOS is given by the following formula: 

 
 

   
 

   

   

   

   

 

 *

2* *

, 1
E

E

V E V E V E
E V d

V VE E V

         
     

      





 
 . (5) 

Combining equations 4 and 5, we get 

 
   

 

 
 

 

     

   

   
*

*

*

, 1
E

V V

V V V E

C EV E V V C V
d

V C E C E C E VE V

      
  

  






 . (6) 

 

3. Recovery of the Α,Ρ,Λ  Functions From Physical Experiments 

3.1 Recovery of the Function  E  From Isochoric Heating 

The way of recovery of the function  E is quite straightforward. To that end, the isochoric 

heating is the most relevant source of information. In the following, all the parameters relating to 

the ambient state will be supplied with the asterisk mark. 

Let  * *

V VT T E  be the temperature dependence upon the internal energy density at the ambient 

volume *V V . By definition, the internal energy change in the isochoric process is equal to the 

heat supply Q . Thus, the determination of the function  * *

V VT T E  requires a thermometer and 

a device measuring the heat supply. Then, equation 2 allows us to recover the function  E : 

        * * * *

V VE T E V T E     .  (7) 

We can now rewrite the general EOS 1 as follows: 

    
   

*

* *
,

E

VE

d
S V E V

T V
  

 



,  (8) 

and equations 2 and 3 as follows: 

      * *, VT V E T E V     (9) 

and 

        
   *

* *

2
* *

,

E

V

E V

d
P V E T E V V

T V

 
 

        
     





.  (10)
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3.2 Recovery of the Functions  V  and  V  From the Quasi-Static Ambient Isotherm 

3.2.1 Formula of the Potential 

Let  * *

T TE E V  be the equation of the ambient isotherm *T T . Then, equation 9 gives the 

following formula of  V : 

     * * * *

V TV T T E V    . (11) 

Substituting equation 11 in equation 8, we get 

    
    

*

* * * *
,

E

E V V T

d
S V E V

T T T E V
  

 





. (12) 

Let  * *

T TS S V  be the values of the entropy on the ambient isotherm  * *

T TE E V . Then we can 

rewrite equation 12 as follows: 

    
 

    

*

*

*

* * * *

TE V

T

E V V T

d
V S V

T T T E V
  

 





. (13) 

  

Inserting equation 13 in equation 12, we get 

    
      *

*

* * * *
,

T

E

T

V V TE V

d
S V E S V

T T T E V




 

 
 . (14) 

This formula should be augmented with  

 

      
*

* * * * * *

V

T T T

V

E V E d P T S V S         ,  

implied by 

 
 

 
 * *

* *T T

T

dE V dS V
P V T

dV dV
   . 

3.2.2 Temperature and Pressure Formulas 

Using equation 14, we get the following relationships for the absolute temperature and pressure: 

       * * * *, V V TT V E T E T T E V   . (15)
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 

    
   

 

  

    *

* *

** * * *

* *

2
* * * *

, 1

/

T

T T

V V T

E
V T

E V V V T

P V E dS V dE V

dV T dVT E T T E V

dT E V dV
d

T T T E V

  
 

  
 

 


 

.

 (16) 

3.3 Recovery of the Functions  V  and  V  From the Quasi-Static Ambient Adiabata 

3.3.1 Formula of the Potential 

Let  * *

S SE E V  be the equation of the ambient adiabata *S S  in the  ,V E  space. Then, we 

get 

  
     *

*

* *
,

S

E

VE V

d
S V E S

T V
 

 



.  (17) 

Let  * *

S ST T V  be the values of temperature, corresponding to the ambient adiabata *S S . 

Then, using equation 9, we get 

       * * * *

S V SV T V T E V      (18) 

Inserting equation 18 into equation 17, we get 

  
        *

*

* * * *
,

S

E

V S V SE V

d
S V E S

T T V T E V




 

 
 .  (19) 

3.3.2 Temperature and Pressure 

Using equation 19, we get 

         * * * *, V S V ST V E T E T V T E V   ,  (20) 

and  

 

 
      

 

 

 

      

      

    
*

* * * * *

*

* * ** * * *

2
* * * *

,

S

S V V S S

S

E
S V SV S V S

E V V S V S

T V T E T E V dE V
P V E

T V dV

d T V T E VT E T V T E V
d

dVT T V T E V

 
  

    

  
 

 


.  (21) 
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3.4 Recovery of the Functions  V  and  V  From the Quasi-Static Ambient Isotherm 

and the Hugoniot Adiabata 

3.4.1 Formula of the Potential 

When dealing with this sort of available measurements we can recover the function  V  as 

noted before and deal further with the equation containing the unknown function  V  only: 

      
*

, ,

E

E

S V E V d K V      ,  (22) 

where 

  
    * * * *

1
,

V V T

K V E
T E T T E V


 

.  (23) 

It is important to realize that  ,K V   should be treated as the already recovered function. 

Using equation 22, we get the following formulas of the absolute temperature and pressure: 

  
 

 
 

 
 

 

*

,1 1 1
, , ,

, , ,

E

E

K V
T V E P V E V d

K V E K V E K V E V





    
 .  (24) 

Let  HE V  be the energy measurements on the Hugoniot adiabata. Then, using the equation of 

the Hugoniot adiabata we arrive at the following formula for the function  V : 

    
       

* *
*

* * **

*

2 2 ,
,

HEV V

H

H

EV V

E E P V K
V d K E d d

V

   
    

   


   
    

 
 , (25) 

which allows us the present the operational EOS for hydrocode in the following form: 

 

 
 

 

  
     

*

*

* * *

*

, ,

2 2
,

H

E

E V

V

H H

H

V

S V E S d K V

E E P V dE
d K E

V d

  

   
 

 





 

  
  

 

 

.

 (26) 

3.4.2 Temperature and Pressure 

The formula in equation 26 implies two formulas: 

  
 

    * * * *1
,

,
V V TT V E T E T T E V

K V E
    ,  (27) 
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and 

 
   

    
 

   * * *

*

,, 2 21
,

, ,
H

E
H H

E V

K V E VK V E V E P V V
P V E d

K V E V K V E V V




   
 

  .  (28) 

3.5 Recovery of the Functions  V  and  V  From the Hugoniot Energy and 

Temperature Measurements 

3.5.1 Formula of the Potential 

Let  HE V  and  HT V  be the energy and temperature measurements on the Hugoniot adiabata. 

Then, we arrive at the following EOS: 

        
      

*

* *

1
, , , ,

E

H H

V H V HE

S V E V d K V K V E
T E T V T E V

   
    . (29) 

 

We arrive at the situation considered previously. Therefore, the formula in equation 26 should be 

modified as follows: 

 

 
 

 

  
     

*

*

* * *

*

, ,

2 2
,

H

E

H

E V

V

H H

H H

V

S V E S d K V

E E P V dE
d K E

V d

 

  
  

 

  

   
 

 




,

 (30) 

or else 

 

 
        

 

     

*

*

* *

* * *

*

1
,

2 21

H

E

V H V HE V

V

H H

HV

S V E S d
T T V T E V

E E P V dE
d

T V d

  
 

   
 

 








  


  
.

 (31) 

3.5.2 Temperature and Pressure  

For temperature and pressure, we have the following recovery formulas: 

  
 

      * *1
,

,
V H V H

H

T V E T E T V T E V
K V E

    , (32) 
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and 

 
   

    
 

   * * *

*

,, 2 21
,

, ,
H

E
H HH H

H HE V

K V E VK V E V E P V V
P V E d

K V E V K V E V V




   
 

  , (33)  

respectively. 

 

4. The Constant Heat Capacity Case 

This case was considered earlier in (4), using a different approach. Here this important case is 

analyzed from the more general point of view.  

4.1 One Important Relationship 

We begin with the relationship  

 
   

   

 

   

 

 

 
   

*

*

*

2

*

ln ln
ln

E

E

E

E

d

V

E V E V
d V

E E




             







  

     
   

   
,

  (34) 

implied by the following chain: 

 

     

   

     
   

   

 

   

 
   

 

   

 

   

 

 

 
   

* * *

*

*

*

*

*

2

*

1 1
ln

1
ln ln ln

ln ln
ln

E E E

E E E

E

E

E

E

d Vd
d V

V V

V E V
V d

E E

V E V
d V

E E

         

 
       

              

  











  
  

         

    
  

  

      
   

   
.

 

We can rewrite equation 34 as follows: 

 
   

     

     

 

 
   

* **

1

1 2

*

ln ln

E EE

E EE

Vd
d V

V
E V





       
  

 




    
   

    
 

 . (35) 

When  E ME N   , where M and N  are constants, using equation 34 we get 
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   

 

 
* *

1
ln

E

E

E Vd

V M E V




 


  
,  (36) 

as it follows from the chain 

 
   

 

 

 

 
* * *

1 1
ln ln

E

E

ME N V E Vd

V M ME N V M E V

  
 

   
 

    
. 

By inserting equation 36 in equation 1, we get the particularly simple formula of the complete 

EOS: 

    
 

 *

1
, ln

E V
S V E V

M E V


 







,  (37) 

or else 

      
1

, lnS V E V E V
M

      .  (38) 

With the help of the thermodynamic identities for  ,S V E , the relationship (equation 38) allows 

us to get the relationships for the absolute temperature and pressure 

    ,T V E M E V    ,  (39) 

and 

          ,P V E M V E M V V V        ,  (40) 

the last of which is implied by the chain: 

 
     

 

 

             

,

.

V
P V E M E V V

M E V

M E V V V M V E M V V V

  
            

           


 



      

 (41) 

In the case of constant heat capacity, equations 2 and 4 imply 

        
*

1 * *

*

1
E

V

E

E E d C E E T E
C

           , (42) 

whereas equation 1 reads 

    
 

 
 

 
*

*

*

, ln

E

E

E E C Vd
S V E V C V C

E C V C V

 
   

 


 
  

 . (43) 

The thermodynamic identities 1 and 3 can be reduced to the form 
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      
 

 *

*

1
, ,L

E E C V
T V E E E V T V E

C C

 
    


 ,  (44) 

      
 

 
 *, , ,L

V
P V E V T V E E E

V


  





  (45) 

the last of which can be also rewritten as follows: 

      
 

 
   *

1
,

V
P V E E E V V V

C V

 
     

  


  


. (46) 

4.2 Recovery of the Functions (V) and (V) From the Quasi-Static Ambient Isotherm 

This case in general is described by the relationship 14. Using equation 42, we can rewrite 

equation 15 as follows: 

    
 * *

*

*
, ln

T

T

E E V CT
S V E S V C

CT

 
  . (47) 

Equation 43 implies the following recovery equations for the absolute temperature, 

  
 * *

,
TE E V CT

T V E
C

 
 ,  (48) 

and pressure 

  
     * * * *

,
T T TE E V CT dS V dE V

P V E
C dV dV

 
  .  (49) 

4.3 Recovery of the Functions (V) and (V) From the Quasi-Static Ambient Adiabat 

This data is recovered by the formula equation 19. Combining it with equation 42, we get the 

following complete EOS: 

  
   

 

* *

*

*
, ln

S S

S

E E V CT V
S V E S C

CT V

 
  . (50) 

The formula (equation 50) implies the following incomplete EOS for the absolute temperature 

  
   * *

,
S SE E V CT V

T V S
C

 
 ,  (51) 
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and pressure 

      
 

 

*

* *

*
,

S

S S

S

T V
P V E E V E E V

T V


       , (52) 

the last of which can be rewritten as  

  
 

 
 

 

* *

*

*

ln
,

S S

S

S

d T V E Vd
P V E E T V

dV dV T V
   .  (53) 

4.4 Recovery of the Functions (V) and (V) From the Quasi-Static Ambient Isotherm 

and the Hugoniot Adiabata 

The potential  ,S V E  and the kernel  ,K V E  are given by the formulas: 

 

 
 

     

   *

* *

*

*

*

* * *

*

* *

, ln

2 2

T

H T

V

H TV

E E V CT
S V E S C

CT

E E P V dE

V d
C d

E E CT

 
  

  




 

  

 


 

 

,

 (54) 

and  

  
 * *

,
T

C
K V E

E E V CT


 
. (55) 

Respectively, the temperature and pressure are given by the formulas 

  
 

   * * *

*1
,

,

T TE E V CT E E V
T V E T

K V E C C

  
     , (56) 

and 

 

 

 
   

   

     

   

* * *

* *

* *

* * *

* *

*

, ln

2 2
.

T T

H T

T H

H T

dE V E E V CT
P V E

dV E V E V CT

E E V CT E V E P V V

V V E V E V CT

 
 

 

    

  

  (57) 
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4.5 Recovery of the Functions (V) and (V) From the Hugoniot Energy and 

Temperature Measurements 

By using equation 31, we get the potential 

 

 
   

 

 

     

*

*

* * *

*

, ln

2 21

H H

H

V

H H

HV

E E V CT V
S V E S C

CT V

E E P V dE
d

T V d

  


  

 
  

   
 

 
 .

  (58) 

The absolute temperature and pressure are given by the formulas 

  
 

   1
,

,

H H

H

E E V CT V
T V E

K V E C

 
   , (59) 

and  

 

 
   

 

   

 

 

   

* * *

*

2 2
,

.

H H H

H

H HH

H

E E V CT V E V E P V V
P V E

CT V V V

d E V CT VE E V

CT V dV

    
 



   

  (60) 

 

5. Conclusion 

We introduced a novel complete EOS — the  -EOS — for hydrocode, which is an operator 

on three functions of one variable each:  V ,  E , and  V . The model is based on the 

simple phenomenological assumption that the heat capacity VC  at constant volume is a function 

of the internal energy density E only. Readers are reminded that the classical ideal case of EOS 

is based on the assumption that VC  is a function of the absolute temperature T  only, whereas the 

Mie-Gruneisen EOS is phenomenologically equivalent to the assumption that VC  is a function of 

the entropy density S only (for further information, refer to the publications [5–10]).  

We established the explicit formulas permitting recovery of the function  V ,  E , and 

 V  from different experimental measurements. 



 13 

6. References 

1. Grinfeld, M. A. Operational Equations of State. 1: A Novel Equation of State for Hydrocode; 

ARL-TR-5744; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 

September 2011. 

2. Grinfeld, M. A. Operational Equations of State. 2: The Generalized Courant-Friedrichs 

Equation of State for Condensed Matter; ARL-TR-5745; U.S. Army Research Laboratory: 

Aberdeen Proving Ground, MD, September 2011. 

3. Grinfeld, M. A. Operational Equations of State. 3: Recovery of the EOS for Hydrocode 

From the Measured Heat Capacity, Isentrope, and Hugoniot Adiabat; ARL-TR-6051; U.S. 

Army Research Laboratory: Aberdeen Proving Ground, MD, July 2012. 

4. Grinfeld, M. A. Operational Equations of State. 4: The Dulong-Petit Equation of State for 

Hydrocode; ARL-TR-6052; U.S. Army Research Laboratory: Aberdeen Proving Ground, 

MD, July 2012. 

5. Segletes, S. B. Classical Methods for Frequency-Based Equations of State. In Recent Res. 

Devel. Phys. Chem. Solids; Pandalai, S. G., Ed.; Transworld Research Network: Trivandrum, 

2002; pp 126. 

6. Segletes, S. B. Classical Methods for Frequency-Based Equations of State; ARL-RP-166; U.S. 

Army Research Laboratory: Aberdeen Proving Ground, MD, March 2007. 

7. Segletes, S. B. The Vibrational Stiffness of an Atomic Lattice; ARL-TR-1757; U.S. Army 

Research Laboratory: Aberdeen Proving Ground, MD, September 1998. 

8. Davis, W. C. Complete Equation of State for Unreacted Solid Explosive. Comb. and Flame 

2000, 120, 399–403. 

9. Grinfeld, M. Complete Operational Equations of State for Hydrocode. Procedia Engineering 

2013, 58, 260–268. 

10. Bilyk, S.; Grinfeld, M.; Segletes, S. Operational Equations of State for Hydrocode: 

Computer Implementation. Procedia Engineering 2013, 58, 424–432. 



 

 

NO. OF  

COPIES ORGANIZATION  

 

14 

 1 DEFENSE TECHNICAL 

 (PDF) INFORMATION CTR 

  DTIC OCA 

 

 1 DIRECTOR 

 (PDF) US ARMY RESEARCH LAB 

  IMAL HRA 

 

 1 DIRECTOR 

 (PDF) US ARMY RESEARCH LAB 

  RDRL CIO LL 

 

 1 GOVT PRINTG OFC 

  (PDF)  A MALHOTRA 

 

 1 RDRL WMP C 

 (PDF)  M GRINFELD 


